광고
광고
광고
광고
광고
광고
광고
광고
광고
광고
로고

[기계적 신경망 물질] 기계적 신경망이라는 새로운 물질은 물리적 특성을 학습하고 변경할 수 있다. 이물질은 격자의 각 연결에 부여하는 중요성 또는 가중치를 변경하여 작업을 수행하는 방법을 배운다. 새로운 유형의 물질은 가변 강성 연결이 있는 고유한 격자 구조 덕분에 예기치 않은 힘을 처리하는 능력을 배우고 향상시킬 수 있다.

https://www.freethink.com/science/mechanical-neural-network

JM Kim | 기사입력 2022/11/14 [00:00]

[기계적 신경망 물질] 기계적 신경망이라는 새로운 물질은 물리적 특성을 학습하고 변경할 수 있다. 이물질은 격자의 각 연결에 부여하는 중요성 또는 가중치를 변경하여 작업을 수행하는 방법을 배운다. 새로운 유형의 물질은 가변 강성 연결이 있는 고유한 격자 구조 덕분에 예기치 않은 힘을 처리하는 능력을 배우고 향상시킬 수 있다.

https://www.freethink.com/science/mechanical-neural-network

JM Kim | 입력 : 2022/11/14 [00:00]

새로운 물질은 건축 재료의 한 유형으로, 물질이 무엇으로 만들어지기 보다는 주로 기하학과 디자인의 특정 특성에서 속성을 얻는다. 예를 들어 벨크로와 같은 후크 앤 루프 패브릭 클로저를 생각해보면 된다. 그것이 면, 플라스틱 또는 다른 물질로 만들어졌는지 여부는 중요하지 않다. 한 면이 뻣뻣한 후크가 있는 천이고 다른 면에 푹신한 루프가 있는 한 소재는 벨크로의 끈적거리는 특성을 갖는다.

 

내 동료와 나는 인공 신경망의 아키텍처를 기반으로 새로운 재료의 아키텍처를 기반으로 했다. 상호 연결된 노드의 레이어는 각 연결에 부여하는 중요성 또는 가중치를 변경하여 작업을 수행하는 방법을 배울 수 있다. 우리는 물리적 노드가 있는 기계적 격자가 각 연결의 강성을 조정하여 특정 기계적 특성을 취하도록 훈련될 수 있다고 가정했다.

 

기계적 격자가 새로운 모양을 취하거나 방향 강도를 변경하는 것과 같은 새로운 속성을 채택하고 유지할 수 있는지 알아보기 위해 컴퓨터 모델을 구축하는 것으로 시작했다. 그런 다음 물질과 입력 힘에 대해 원하는 모양을 선택하고 컴퓨터 알고리즘이 연결의 장력을 조정하여 입력 힘이 원하는 모양을 생성하도록 했다. 우리는 200개의 다른 격자 구조에 대해 이 훈련을 수행했고 삼각형 격자가 우리가 테스트한 모든 모양을 달성하는 데 가장 좋다는 것을 발견했다.

 

일련의 작업을 달성하기 위해 많은 연결이 조정되면 물질이 원하는 방식으로 계속 반응한다. 훈련은 어떤 의미에서는 재료 자체의 구조로 기억된다.

 

그런 다음 삼각형 격자에 배열된 조정 가능한 전기 기계 스프링이 있는 물리적 프로토타입 격자를 만들었다. 프로토타입은 6인치 연결로 만들어졌으며 길이는 약 2피트, 너비는피트이다.그리고 효과가 있었다. 격자와 알고리즘이 함께 작동할 때 재료는 다른 힘을 받을 때 특정한 방식으로 학습하고 모양을 변경할 수 있었다. 우리는 이 새로운 물질을 기계적 신경망이라고 부른다.

 

중요한 이유

 

일부 살아있는 조직 외에 예상치 못한 부하를 처리하는 데 더 나은 방법을 배울 수 있는 물질은거의 없다. 갑자기 돌풍을 받아 예상치 못한 방향으로 밀려나는 비행기 날개를 상상해 보면된다. 날개는 그 방향으로 더 강하도록 디자인을 변경할 수 없다.

 

우리가 디자인한 원형 격자 재료는 변화하거나 알려지지 않은 조건에 적응할 수 있다. 예를 들어 날개에서 이러한 변화는 내부 손상의 누적, 날개가 항공기에 부착되는 방식의 변화 또는 변동하는 외부 하중일 수 있다. 기계적 신경망으로 만들어진 날개가 이러한 시나리오 중 하나를 경험할 때마다 방향 강도와 같은 원하는 특성을 유지하기 위해 연결을 강화하고 부드럽게 할 수 있다. 시간이 지남에 따라 알고리즘에 의한 연속적인 조정을 통해 날개는 새로운 속성을 채택하고 유지하며 각 동작을 일종의 근육 기억으로 나머지에 추가한다.

 

이러한 유형의 재료는 건축 구조물의 수명과 효율성을 위해 광범위하게 응용될 수 있다. 기계적 신경망 재료로 만든 날개는 더 강할 뿐만 아니라 주변 조건의 변화에 따라 연료 효율성을 극대화하는 모양으로 변형되도록 훈련될 수도 있다.

 

아직 알려지지 않은 것

 

지금까지 우리 팀은 2D 격자로만 작업했다. 그러나 컴퓨터 모델링을 사용하여 우리는 3D 격자가 학습 및 적응을 위해 훨씬 더 큰 용량을 가질 것이라고 예측한다. 이러한 증가는 3D 구조가 서로 교차하지 않는 연결 또는 스프링을 수십 배 더 많이 가질 수 있기 때문이다. 그러나 첫 번째 모델에서 사용한 메커니즘은 대규모 3D 구조에서 지원하기에는 너무 복잡하다.

 

향후 계획

 

동료와 내가 만든 재료는 개념 증명이며 기계적 신경망의 잠재력을 보여준다. 그러나 이 아이디어를 현실 세계로 가져오려면 개별 조각을 더 작게 만들고 유연성과 장력의 정확한 속성을 사용하는 방법을 알아내야 한다.

 

우리는 미크론 규모의 재료 제조에 대한 새로운 연구와 조정 가능한 강성을 가진 새로운 물질에대한 작업을 희망한다. 가까운 미래에 미크론 규모의 요소와 조밀한 3D 연결이 있는 강력한 스마트 기계 신경망을 유비쿼터스 현실로 만드는 발전으로 이어지게 된다.

 

 
[세계미래보고서]시리즈, 판매제품
1/6
광고
광고
광고
광고
광고
광고
광고
많이 본 기사
신기술/산업, ESG, 미래교육 많이 본 기사
최신기사